ASSERTION AND REASONING QUESTIONS CLASS X MATHEMATICS

UNIT: NUMBER SYSTEM CHAPTER 1: REAL NUMBERS

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as:

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.

Q1: Assertion: The H.C.F. of two numbers is 16 and their product is 3072. Then their L.C.M. = 162.

Reason: If a and b are two positive integers, then $H \subset F$. \times L.C.M. = $a \times b$.

Q2: Assertion: 12^n ends with the digit zero, where n is any natural number. **Reason**: Any number ends with digit zero, in its prime factor is of the form $2^m \times 5^n$,

where m and n are naturablers.

Q3: Assertion: A number N when divided by 15 gives the remainder 2. Then the remainder is sain, when N is divided by 5.

Reason: √3 is an irrational number.

Q4: Assertion: For any two positive integers p and q, HCF (p, q) × LCM (p, q) = p × q

Reason: If the HCF of two numbers is 5 and their product is 150, then their LCM is 40.

Q5: Assertion: 8^n ends with digit 0 for some positive integer n.

Reason: Prime factorization of a number ending with digit 0 is of the form $2^a \times 5^b$, where a and b are positive integers.

Q6. Assertion: If HCF(26,169) = 13 then LCM(26,169) = 676.

Reason: $HCF(a \times b) \times LCM(a \times b) = a \times b$.

Q7.Assertion: The largest number that divide 70 and 125 which leaves remainder 5 and 8 is 13.

Reason: HCF(65,117) = 13.

Q8. Assertion: The given pair of numbers 231 and 396 are co-prime.

Reason: 231 and 396 have only 1 as a common factor

ANSWERS: 1) d 2) d

5) d 6) d 7) a 8)d

3) b

4) c

UNIT : ALGEBRA CHAPTER 2: POLYNOMIALS

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as:

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false,
- (d) Assertion (A) is false but Reason (R) is true

Q1: Assertion: A quadratic polynomial carbove at the most two zeroes.

Reason: $x^2 + 7x + 12$ has no real x = 2.

Q2: Assertion: If the sum of the relees of the quadratic polynomial $x^2 - 2kx + 8$ is 2 then value of k is 1.

Reason: Sum of zeroes of a quadratic polynomial ax²+bx+c is - b/a

Q3: Assertion: If the product of the zeroes of the quadratic polynomial $ax^2 + 3x + 5k$ is -10 then value of k is -2.

Reason: Sum of zeroes of a quadratic polynomial $ax^2 + bx + c$ is -b/a.

Q4: Assertion: x + 1 is a Linear Polynomial

Reason (R): The polynomials of degree 1 are called linear polynomials.

Q5: Assertion: -1 & -4 are the zeroes of polynomial $x^2 - 3x - 4$

Reason: a real number k is said to be a zero of polynomial P(x) if P(K)=0

Q6. **Assertion**: x = 2 is a zero of the polynomial $x^2 + 2x - 8$.

Reason: A real number 'a' is zero of a polynomial p(x) if p(a) = 0.

Q7. Assertion: $p(x) = 14x^3 - 2x^2 + 8x^4 + 7x - 8$ is a polynomial of degree 3.

Reason: The highest power of x in the polynomial p(x) is the degree of the polynomial.

ANSWERS:

1) c

2) a

3) b

4) a

5) d

6)a

7) a

UNIT: ALGEBRA

CHAPTER - 3 -PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Directions:

- (a) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (c) If Assertion is correct but Reason is incorrect.
- (d) If Assertion is incorrect but Reason is correct.
 - ASSERTION: There are infinite number of thes which passes through (1, 13)
 REASON: A linear equation in two variables has infinitely many solutions

ANS b)

2. ASSERTION: The graph of linear equations 3x + 2y = 12 and 5x - 2y = 4 gives a pair of intersecting lines.

REASON: The graph of linear equation $s a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ gives a pair of intersecting lines if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

ANS a)

3. ASSERTION: If the pair of lines are coincident, then we say that pair of lines is inconsistent and it has a unique solution.

REASON: If the pair of lines are parallel then the pairs has no solution and is called consistent pair of equations.

ANS d)

4. ASSERTION: If one equation of a pair of dependent linear equations is -3x + 5y - 2 = 0 The second equation will be -6x + 10y - 4 = 0

REASON: The condition for dependent linear equation is $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

ANS c)

UNIT: ALGEBRA CHAPTER- 4 QUADRATIC EQUATION

1 Assertion: If one root of the quadratic equation $6x^2 - x - k = 0$ is 2/3, then the value of k is 2.

Reason: The quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ has atmost two roots.

2..Assertion: $(2x-1)^2 - 4x^2 + 5 = 0$ is not a quadratic equation.

Reason: An equation of the form $ax^2 + bx + c = 0$, $a \ne 0$, where a, b, $c \in R$ is called a quadratic equation.

3. Assertion: The roots of the quadratic equation $x^2 + 2x + 2 = 0$ are imaginary **Reason**: If discriminant D = $b^2 - 4ac < 0$ then the roots of quadratic equation $ax^2 + bx + c = 0$ are imaginary.

4. **Assertion:** $3x^2 - 6x + 3 = 0$ has repeated roots.

Reason: The quadratic equation $ax^2 + bx + c = 0$ have repeated roots if discriminant D>0

ANS 1.b ANS 2. a ANS 3. a ANS 4. C

UNIT: ALGEBRA CHAPTER 5 - ARITHMETIC PROGRESSION

- a) Both assertion and reason are correct and cason is the correct explanation for Assertion
- b) Both assertion and reason are corrected Reason is not the correct explanation for Assertion
- c) Assertion is true but the Reason is false
- d) Both Assertion and Reason are false
- 1. **ASSERTION**: Sum of midfal number from 1 to 100 is 5050

REASON: The formula of general term a_n is $a_n = a + (n-1)d$

ANS: b)

2. **ASSERTION:** If numbers a, b, c are in AP then b-a = c-b

REASON: Given three numbers are in AP then the common difference will be same

ANS a)

3. **ASSERTION**: The value of n, if a =10, d= 5, a_n =95 is 18.

REASON: The formula of general term a_n is $a_n = \frac{n}{2} [2a + (n-1)d]$

ANS c)

4. **ASSERTION:** The sum of the series with the nth term $t_n = 9 - 5n$ is 220 when number of terms n = 6

REASON: Sum of first n terms in an AP is given by the formula

$$S_n = 2n [2a + (n-1)d]$$

ANS d)

UNIT : GEOMETRY CHAPTER 6: TRIANGLES

Directions:

In the following questions, a statement of assertion (A) is followed by a statement of reason (R).

Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b)Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
 - (c)Assertion (A) is true but reason (R) is false.
- (d)Assertion (A) is false but reason (R) is true.
- **Q.1. Assertion (A):** If two sides of a right angle are 7 cm and 8 cm, then its third side will be 9 cm.

Reason (R): In a right triangle, the square of the hypotenise is equal to the sum of the squares of the other two sides.

Answer: (d)

Q.2. Assertion (A): If \triangle ABC and \triangle PQR are congruent triangles, then they are also similar triangles.

Reason (R): All congruent triangles are similar but the similar triangles need not be congruent.

Answer: (a)

Q.3. Assertion (A). The given figures, $\triangle ABC \sim \triangle GHI$.

Reason (R): If the corresponding sides of two triangles are proportional, then they are similar.

Answer: (a)

Q.4. Assertion (A): In the \triangle ABC, AB = 24 cm, BC = 10 cm and AC = 26 cm, then \triangle ABC is a right angle triangle.

Reason (R): If in two triangles, their corresponding angles are equal, then the triangles are similar.

Answer: (b)

Q.5. Assertion (A): In the given figure, PA || QB || RC || SD.

Reason (R): If three or more line segments are perpendiculars to one line, then they are parallel to each other.

Answer: (a)

UNIT : CO-ORDINATE GEOMETRY CHAPTER-7 COORDINATE GEOMETRY

Directions:

In the following questions, a statement of assertic (A) is followed by a statement of reason (R).

Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are not eason (R) is the correct explanation of assertion (A).
- (b)Both assertion (A) and reason? are true but reason (R) is not the correct explanation of assertion (A).
- (c)Assertion (A) is true but leason (R) is false.
- (d)Assertion (A) is false but reason (R) is true.
 - 1. **Assertion :** The point which divides the line joining the points A(1, 2) and B(-1, 1) internally in the ratio 1: 2 is $(\frac{-1}{2}, \frac{5}{3})$

Reason: The coordinates of the point P(x, y) which divides the line segment joining the points A (x_1, y_1) and B (x_2, y_2) in the ratio $m_1: m_2$ is $\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$

2. **Assertion**: Ratio in which the line 3x + 4y = 7 divides the line segment joining the points (1, 2) and (-2, 1) is 4: 9

Reason : The coordinates of the point P(x, y) which divides the line segment joining the points A(x_1 , y_1) and B(x_2 , y_2) in the ratio m_1 : m_2 is $\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$

3. **Assertion**: C is the mid-point of PQ, if P is (4, x), C is (y,-1) and Q is (-2, 4), then x and y respectively are -6 and 1.

Reason : The mid-point of the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

4. Assertion: The point (0, 4) lies on y -axis.

Reason: The X co-ordinate on the point on y -axis is zero

5. **Assertion :** The point (-1, 6) divides the line segment joining the points (-3, 10) and (6, -8) in the ratio 2 : 7 internally.

Reason: Three points A,B and C are collinear if AB + BC = AC

ANS1. d ANS2. a ANS3. a ANS4. a ANS5.b

UNIT - 5 CHAPTER - 8 - INTRODUCTION TO TRIGONOMETRY

Directions:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) it is.
- **1.Assertion:** The value of $\sin 60^{\circ}$ cos $\cos 60^{\circ}$ is 1

Reason: sin 900=1 and cos 900=0

- (b) Both assertion (A) and cason (R) are true but reason (R) is not the correct explanation of assertion (A).
- 2. Assertion: sin A is the product of sin and A.

Reason: The value of $\sin \theta$ increases as θ increases.

ANS: (d) Assertion (A) is false but reason (R) is true.

3. Assertion: In \triangle ABC, right-angled at B, AB = 24 cm, BC = 7 cm. The value of

tan C is
$$\frac{24}{7}$$

Reason: tan C = Opposite side/Adjacent side.

ANS (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

4. Assertion: The value of $\sin \theta = \frac{4}{3}$ is possible.

Reason: Hypotenuse is the largest side in any right angled triangle.

Ans:(d) Assertion (A) is false but reason (R) is true.

UNIT - 5 CHAPTER - 9 - SOME APPLICATION OFTRIGONOMETRY

In the following questions ,a statement of assertion (A) is followed by a statement of reason (R) .Mark the correct choices as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- 1) Assertion: The angle of elevation of an object viewed, is the angle formed by the line of sight with the horizontal when it is above the horizontal level.

Reason: The angle of depression of an object viewed, is the angle formed by the line of sight with the horizontal when it is below the horizontal level.

- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- **2.Assertion:** If the length of shadow of a vertical bole is equal to its height, then the angle of elevation of the sun is 45°

Reason: According to Pythagoras the read $h^2 = l^2 + b^2$, where h = hypotenuse, l = length and b = base

- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- 3.Assertion: In the figure (1AB = 10 m, then height BC = 10 m

Reason:
$$\tan 45 = \frac{AP}{BC} = \frac{10}{BC}$$

$$1 = \frac{10}{RC}$$
 OR BC = 10

Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

4. Assertion: The line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.

Reason: Trigonometric ratios are used to find height or length of an object or distance between two buildings

Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

UNIT – GEOMETRY

CHAPTER 10 - CIRCLES

DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- **1. Assertion:** If in a circle, the radius of the circle is 3 cm and distance of a point from the center of a circle is 5 cm, then length of the tangent will be 4 cm.

Reason: $(hypotenuse)^2 = (base)^2 + (height)^2$

Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

2. Assertion: If length of a tangent from an external point to a circle is 8 cm, then length of the other tangent from the point is 8 cm.

Reason: Length of the tangents dayn from an external point to a circle are equal.

Ans: (a) Both assertion (A) are true and reason (R) is the correct explanation of assertion (A)

3. Assertion: If in a α coic quadrilateral, one angle is 40° , then the opposite angle is 140° .

Reason: Sum of opposite angles in a cyclic quadrilateral is equal to 360°.

Ans: (c) Assertion (A) is true but reason (R) is false

4. Assertion: In the following diagram, ∠POQ = 2 ∠ PRQ

Reason: Angle subtended by the arc at the centre is double the angle subtended by it on the remaining part of the circle

Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

UNIT: MENSURATION Chapter 12: AREA RELATED TO CIRCLES

In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- Q.1. **Assertion (A):** In a circle of radius 6 cm, the angle of a sector is 60°. Then the area of the sector is 132/7 cm².

Reason (R): Area of the circle with radius r is πr^2

- Ans. (b) Both assertion (A) are reason (R) are true but reason (R) is not the correct explanation of assertion (N).
- Q. 2. **Assertion:**The tength of the minute hand of a clock is 7 cm. Then the area swept by the minute hand in 5 minute is 77/6 cm².

Reason (R): The length of an arc of a sector of angle q and radius r is given by

$$l = \frac{\theta}{360^{\circ}} \times 2\pi r$$

Ans. (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

Q. 3. **Assertion:** Area of a segment of a circle is less than the area of its corresponding sector.

Reason: The area of the circle inscribed in a square of side a cm, π a²/4.

Ans. (d) Assertion (A) is false but reason (R) is true.

Q. 4.**Assertion:** If outer and inner diameter of a circular path is 10m and 6m then area of path is 16π m².

Reason: if R and r be the radius of outer and inner circular path = $\pi(R^2 - r^2)$

Ans. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

UNIT: MENSURATION

CHAPTER 13: SURFACE AREAS & VOLUMES

Directions:

- a) Both Assertion(A) and Reason (R) are true and Reason (R) is the correct explanation for Assertion (A)
- b) Both Assertion(A) and Reason(R) are true but Reason(R) is not correct explanation for Assertion.
- c) Assertion(A) is true but Reason(R) is false.
- d) Both Assertion(A) is false and Reason(R) e.e.
- **1**.Assertion(**A**): If we join two hemispheres same radius along their bases, then we get a sphere.

Reason(R): A tank is made of the shape of a cylinder with a hemispherical depression at one end. The height of the cylinder is 1.45 m and radius is 30 cm. The total surface area of the tank is 3.5 m²

Ans: b) both Assertion (A) and Reason (R) are true but Reason(R) is not correct explanation for Assertion(A)

2. Assertion(**A**): The volume of two sphere are in the ratio 27: 8 then the surface area is in the ratio 3:2.

Reason(R): Volume of sphere= $\frac{4}{3}\pi r^2$ and it's surface area= $4\pi r^3$

Ans: c) both Assertion(A) is true and Reason(R) is false.

3. Assertion(**A**): Savita had to make a model of a cylindrical kaleidoscope for her science project. She wanted to use chart paper to make the curved surface of the kaleidoscope. 550cm² would be the area of chart paper required by her, if she wanted to make a kaleidoscope of length 25 cm with a 3.5 cm radius.

Reason(**R**): Area of chart paper required = curved surface area of the kaleidoscope= $2\pi rh$

Ans: a) both Assertion(**A**) and Reason(**R**) are true and Reason(**R**) is correct explanation for Assertion(**A**).

4. Assertion(**A**): The lateral surface area of a right circular cone of height 28 cm and base radius 21 cm is 2310 cm²

Reason(R): Lateral surface area = πrl^2

Ans: c) Assertion(A) is true but Reason(R) is false.

UNIT - STATISTICS AND PROBABILITY

DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
 - Q1) **Assertion**: Two dice are thrown simultane justy. There are 11 possible outcomes and each of them has a probability $\frac{1}{11}$.

Reason: Probability of an event (500 defined as

Q2) **Assertion:** The probability of an event that cannot happen or which is impossible, is equal to zero.

Reason: The probability lies between 0 and 1. Hence, it cannot be negative.

Q3) Assertion: If P(E) = 0.07, then its probability of 'not E' is 0.93

Reason: P(E) + P(not E) = 1

Q4) **Assertion:** The probability of getting a bad egg in a lot of 400 is 0.035. The number of bad eggs in the lot is 14.

Reason: If the probability of an event is p, the probability of its complementary event will be 1-p

Q5) **Assertion:** If the value of mode and mean is 60 and 66 respectively, then the value of median is 64.

Reason: 3 Median = (Mode + 2 Mean)

Q6)

Assertion: Consider the following frequency distribution:

Class Interval	3-6	6-9	9-12	12-15	15-18	18-21	
Frequency	2	5	21	23	10	12	

The mode of the above data is 12.4.

Reason: The value of the variable which occurs most often is the mode.

Q7)

Assertion: Consider the following frequency distribution:

Class Interval	10-15	15-20	20-25	25-30	30-35
Frequency	5	9	12	6	8

The modal class is 10-15.

Reason: The class having maximum frequency is called the modal class.

ANS.1) d ANS2) b ANS3) a ANS4) b

ANS5) a ANS6) b ANS7) d ANS.1) d ANS4) b

ANS5) a